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Abstract 
Introduction: Irrigation water is an expensive and limited resource. Previous studies 

show that irrigation scheduling can boost efficiency by 20-60%, while improving the water 

productivity by at least 10%. A key aspect of irrigation scheduling is accurate estimation of 

crop water use and soil water status, which often require modelling with good information 

on soil, crop, climate and field management. However, this input information is often 

highly uncertain. Our study aims to obtain a comprehensive understanding of uncertainties 

in irrigation scheduling that arise from individual model inputs, from which identifying the 

key contributor of uncertainty. Our study aims to understand the uncertainty in model-

based irrigation scheduling and the key model inputs that contribute to this uncertainty. To 

achieve this, we first performed a comprehensive literature review to identify the key 

sources and the expected ranges of uncertainty in individual model inputs. Secondly, a 

global sensitivity analysis was conducted to quantify the influence of each model input on 

the total uncertainty of the modelled irrigation scheduling decision, across 14 climatically 

different locations in Australia. 
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Materials and Methods: To achieve this, we used a global sensitivity analysis to assess 

the relative importance of the uncertainty in each model input to the total uncertainty in 

output. This analysis focused on the modelled irrigation scheduling (summarized with 

irrigation amount per day during an irrigation cycle) with a single-bucket soil water balance 

model following the Food and Agriculture Organisation (FAO). The key input variables 

required by the model include weather data, crop parameters (i.e., crop coefficient and root 

depth), soil parameters (plant available water capacity) and management factors (depletion 

factor).  

Results: To define the uncertainty in each model input, we first performed a 

comprehensive literature review to summarize the key sources of uncertainty in estimating 

each of these model inputs, and the expected range of uncertainty in the data of each input. 

Based on these uncertainty ranges, we ran the global sensitivity analysis with the soil water 

scheduling model. In this analysis, a large number of random samples were drawn for each 

input variable within its expected range of uncertainty, to produce ensemble simulations of 

soil water status and thus irrigation scheduling decisions. The total uncertainty in these 

scheduling decisions were then analysed with respect to that of each input variable, to 

establish the relative importance of the uncertainty in individual input variables. The 

sensitivity analysis was performed at 14 climatically different locations in main irrigation 

districts across Australia to provide a comprehensive understanding of sensitivity.  

Conclusions: Our results highlight the crop coefficient as the most important contributor 

to the total uncertainty in irrigation scheduling simulation, across different climate zones in 

Australia. The uncertainty in crop coefficient can be potentially reduced by better 

representation of its spatial and temporal variation, as well as considering alternative 

approaches such as remote sensing estimates. Our findings are useful to inform the future 

direction of research to improve irrigation scheduling in Australia. Further, our modelling 

approach is transferable to other irrigation regions to better understand the uncertainties 

associated with irrigation scheduling and the key data sources that lead to these 

uncertainties.  

 

Keywords: Irrigation scheduling, Soil water balance, Sensitivity analysis, Uncertainity, 

Water productivity. 
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1. Introduction  

Globally, 70% of freshwater is consumed by irrigation, while about 40% of 

the worldwide food production is contributed by irrigated agriculture (The 

World Bank, 2017). Whilst important, irrigation water is expensive and 

limited. Irrigation scheduling is shown to be able to boost efficiency by  

20-60%, while improving the water productivity by at least 10% (Charlesworth, 

2005). A key aspect of irrigation scheduling is accurate estimation of crop 

water use and soil water status. This is often achieved by model-based 

approaches together with good information on soil, crop, climate and field 

management, which show good capability for predictions and testing 

management options, thus illustrate high potential to support on-farm 

irrigation scheduling as operational tools (George et al., 2000, Gu et al., 2020). 

However, inputs required by the such soil-water based scheduling models 

are often difficult to measure and/or highly uncertain. For example, the models 

need future weather to predict the atmospheric evaporative demand, but 

weather forecasts are often uncertain to inform definite irrigation decisions 

(Cai et al., 2011). Accurate crop information is critical to the modelling of 

crop water use, which is, however, often difficult to obtain as they are highly 

variable across different locations, crop types, climatic conditions and growth 

stages (Guerra et al., 2016). Further, the models also require initial soil water 

content to define the initial condition, while the measurement of soil water is 

often only practical at point scale, leading to large uncertainty in the 

measurements to represent the true conditions across space (Paraskevopoulos 

& Singels, 2014; Grayson & Western, 1998). 

Our study aims to understand the uncertainty in model-based irrigation 

scheduling and the key model inputs that contribute to this uncertainty. To 

achieve this, we first performed a comprehensive literature review to identify 

the key sources and the expected ranges of uncertainty in individual model 

inputs. Secondly, a global sensitivity analysis was conducted to quantify the 

influence of each model input on the total uncertainty of the modelled 

irrigation scheduling decision, across 14 climatically different locations in 

Australia. We then discuss alternative approaches to estimate the most 

important model input identified from the sensitivity analysis, along with 

potential ways to reduce its uncertainty. 

2. Methods 

The study focuses on irrigation scheduling decisions informed by a simple 
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bucket soil water balance model, and the uncertainties in the modelled 

decisions contributed by individual model inputs. Here we first provide a brief 

introduction of the soil water balance model and how it is used to inform 

irrigation scheduling, followed by an overview of the 14 case study locations. 

We then introduce the study approach to investigate the contribution of 

individual model inputs to the total uncertainty in irrigation scheduling.  

2-1. Soil water balance model 

A simple single-bucket soil water balance model (Allen et al., 1998) was used 

to inform irrigation scheduling in this study. The model conceptualizes root-

zone soil layers as a bucket, taking rainfall and irrigation as water inputs, and 

evapotranspiration (ET) and deep drainage as water losses. In this study, we 

assume deep drainage negligible, which makes ET the only way to deplete soil 

water. The model runs at a daily time step and requires ten main input 

variables from four categories to estimate the different water balance 

components, which are listed below and discussed in detail in Section 2.4: 

 Daily weather variables include rainfall and other variables required to 

estimate reference ET (i.e., dew temperature, minimum temperature, 

maximum temperature, wind speed and solar radiation); 

 Crop parameters to modulate the reference ET across the growth cycle of 

specific crops (i.e., crop coefficient and root depth); 

 Soil parameters to define the boundaries of the soil water bucket (i.e., 

extractable soil water, which is the difference between field capacity and 

wilting point). 

 Irrigation management factor i.e., depletion factor. 

The soil water balance model can output both the time and amount of 

irrigation. For this study, we assumed that the soil water bucket is initially full 

and ran the simulation until the end of the first irrigation cycle (i.e., when the 

next irrigation is triggered) only. Both the irrigation amount and timing were 

then extracted to estimate the average irrigation amount per day across this 

irrigation cycle. The irrigation amount per day was considered as the model 

output for which the total uncertainty was to be quantified, for which 

contributions of individual input variables to be assessed. 

2-2. Case study locations 

To comprehensively assess the sensitivity of irrigation scheduling to input 

uncertainties, we included 14 climatically different locations within key 

irrigation districts across Australia as case study. These study sites are mapped 
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in Figure 1, along with a summary of their key climatic statistics in Table 1. 

Within these, a key metric to highlight the different climatic conditions of the 

locations is the Aridity Index, which is defined as the ratio of annual 

precipitation to annual evapotranspiration, and thus representing the relative 

dryness. The 14 study locations span across a wide range of aridity from the 

driest at 0.16 (Station ID 76031) to the wettest at 0.63 (Station ID 32040). 

 

Figure 1. The locations of 14 studied (labelled by weather station ID) in Australia. 

Background colours show the main climate zones in Australia based on the Köppen 

classification (Beck et al., 2018). 

Table 1. Summary of 14 studied locations, their climatic statistics 

and corresponding irrigation area 

Weather 

Station ID 

Record 

Period 

Annual 

rainfall (mm) 

Annual Potential 

ET (mm) 

Aridity 

Index 
Irrigation Area 

76031 1999-2018 285.4 1783.8 0.16 Sunraysia 

24024 1999-2018 256.1 1506.5 0.17 Golden Heights 

74258 1999-2018 363.9 1732.9 0.21 Murray 

35264 1999-2018 543.2 1873.1 0.29 Nogoa-Mackenzie 

54038 2003-2018 569.8 1899.3 0.3 Namoi 

81125 1999-2018 436.7 1408.7 0.31 Shepparton 

41359 1999-2018 614.7 1707.5 0.36 Logan River 

2056 1999-2018 836.1 2039.3 0.41 Ord 

9994 2003-2018 927.7 1627.5 0.57 South West 
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Weather 

Station ID 

Record 

Period 

Annual 

rainfall (mm) 

Annual Potential 

ET (mm) 

Aridity 

Index 
Irrigation Area 

85279 1999-2018 644.9 1111.9 0.58 West Gippsland 

33002 1999-2018 952.0 1613.6 0.59 Burdekin-Haughton 

41175 2000-2018 756.4 1240 0.61 Condamine 

26021 1999-2018 777.4 1274.4 0.61 South East 

32040 1999-2018 1136 1803.2 0.63 Burdekin-Haughton 

2-3. Sensitivity analysis  

We performed a Sobol’ sensitivity analysis to understand the relative 

importance of uncertainties in individual input variables for irrigation 

scheduling. The Sobol' method is a global variance-based approach (Sobol, 

1993), which quantifies the contributions of individual model inputs to the 

uncertainty in the model output by decomposing the total output uncertainty to 

contributions from individual input variables and their interactions. For each 

model input, the Sobol’ method estimates two key quantities called the 

sensitivity indices: the main effect and the total effect. The former represents 

the individual effect of uncertainty in a single input, while the latter represents 

the combined effects of uncertainty in this specific input together with its 

interaction with uncertainties in all other inputs. Both the main and the total 

effect indices are between 0 to 1, indicating no effect to 100% effect on the 

model output. To perform the variance decomposition and estimate sensitivity 

indices, the Sobol’ method requires generation of a large number of samples 

for each model input variable within its expected range of uncertainty (Sobol, 

2001). In the subsequent section, we describe the comprehensive literature 

review performed to define these ranges of uncertainty. 

2-4. Defining the expected ranges of uncertainty in each model input 

As discussed in Section 2.1, we considered ten key input variables to model 

irrigation scheduling. Thus, the total uncertainty in irrigation scheduling is 

contributed by individual inputs, which can be due to different sources of 

uncertainty and thus, consisting of different ranges of uncertainty. We 

performed a comprehensive literature review to identify the expected source 

and range of uncertainty for each input. We then identified realistic 

probabilistic error distributions to generate a large number of representative 

samples for each input variable within its expected range of uncertainty, these 

samples were used to understand the sensitivity of irrigation scheduling 

(Section 2.3). The key references reviewed to understand the uncertainty in 

each input variable is listed in Table 2. 
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Table 2. Input factors considered for irrigation scheduling sensitivity analysis 

and the key literature reviewed to define their uncertainty 

Input Variable Category 
Source/Reference on expected 

uncertainty 

Daily dew point temperature (Tdew)  

BoM automatic weather stations (BoM) 

(Su et al., 2019; Acharya et al., 2019; 

Webb, 2010) 

Minimum daily temperature (Tmin)  

Maximum daily temperature (Tmax)  

Daily wind speed average (U) Weather 

Daily total solar radiation (Rs)  

Daily rainfall (P)  

Extractable soil water (FC-WP) Soil 

(Veihmeyer & Hendrickson,1928; Zeng 

et al., 2013; Rab et al., 2011; Ladson et al., 
2006; Ratliff et al., 1983; Allen et al., 1998) 

Single crop coefficient (Kc)  (Allen et al.,1998; Guerra et al., 2016) 

Root depth Crop (Allen et al., 1998; Canadell et al., 1996) 

Depletion factor (ρ) Management (Allen et al., 1998) 

a. Weather Variables 

Weather data can be obtained from actual observations from weather stations 

and model-derived reanalysis data. We reviewed literatures from the World 

Meteorological Organization (WMO, 1996) and the Australian Bureau of 

Meteorology (BoM) (Webb, 2010) to identify the ranges of measurement 

errors. To understand the expected ranges of interpolation errors within 

reanalyse data, we reviewed literature on four commonly used reanalysis 

weather products in Australia: the BoM’s Australian Water Availability 

Project (AWAP) (Jones et al., 2009) is used, the BoM’s Atmospheric high-

resolution Regional Reanalysis for Australia (BARRA) (Jakob et al., 2017), 

the Modern-Era Retrospective analysis for Research and Applications-2 

(MERRA-2) (Gelaro et al., 2017) and the European Centre for Medium-Range 

Weather Forecasts (ECMWF) ReAnalysis Interim (ERA-Interim) (Dee et al., 

2011). 

Observations from weather stations can be subject to errors due to sensor 

accuracy, malfunctioning and human errors etc. Reanalysis data are essentially 

interpolated from observations from nearby weather stations, which are 

associated with corresponding interpolation errors. In this study, these 

potential errors were represented in two forms as systematic bias and random 

noise. Systematic bias represents the situation where the errors in weather data 

are approximately constant over time, which are mostly seen in observations. 
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Random noise represents errors which are randomly distributed but centred 

around zero, which are mostly seen in reanalysis data. 

For daily dew temperature (Tdew), minimum temperature (Tmin), maximum 

temperature (Tmax), solar radiation (Rs) and wind speed (U), we considered the 

two types of errors with Eq. 1 as: 

  
        

    
    Eq. 1 

Where for at time step t, Pt
^* 

is the value of weather input with error, and Pt 

is the corresponding value without error, εt
^ 
and εt

* 
are the bias and random 

errors, respectively.  

For rainfall, due to the inclusion of zero values, the measurement errors are 

often defined differently to the abovementioned weather variables as 

multiplicative errors, while the random reanalysis errors can still be treated as 

random noises. This thus leads to Eq.2 which was used to considering rainfall 

uncertainty: 

  
           

     
   Eq. 2 

To represent the two types of errors in Eq. 1 and 2, εt
^
 and εt

*
 were sampled 

from probabilistic distributions individually defined for each weather input. 

For bias-only errors, εt
^
 is defined as a non-zero constant and εt

*
 is held at zero. 

The noise-only errors at different time steps are represented by holding εt
^
 at 0, 

while εt
*
 are randomly drawn from a pre-defined error distribution.  

b. Soil parameters 

The soil water balance model used to inform irrigation scheduling in this study 

requires extractable soil water as a key soil parameter. The extractable soil 

water is the difference between field capacity (FC) and the wilting point (WP), 

which are defined as the upper and lower limits of soil water contents at which 

drainage and permanent wilting of plant will start, respectively. A common 

way to estimate the FC and WP is with field measurements of the soil water 

content at the soil suction pressures of -0.33 and -15 bar (Richards & Weaver, 

1944).  

We reviewed two seminal field studies which collected a total of 1724 

measured soil samples across the United States and measured their water 

contents at -0.33 and -15 bar pressure (Ratliff et al., 1983; Rawls et al., 1982). 

In addition, we reviewed the FAO guidelines on the recommended ranges of 

extractable soil water for different soil types. Our final estimates of the 

distribution of extractable soil water were obtained from synthesizing these 

references. 
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c. Crop Parameters 

The crop coefficient Kc and the root depth are key crop properties used in the 

soil water balance model used to inform irrigation scheduling. The most widely 

used approach to estimate Kc is set out in the FAO56 guideline, which provides 

generalized values of Kc for different crops during different growth stages, 

for various climates. However, this approach still consists of high level of 

generalization and simplicity, which can lead to uncertainty in the 

recommended Kc values under different practical conditions. Considering this, 

we further reviewed alternative sources of Kc, including a comprehensive 

review which consists of over 150 field measurements of Kc across multiple 

crop types (Guerra et al., 2016), along with several other studies which reported 

measured Kc values (Elliott et al., 1988; Guerra et al., 2015; Pereira et al., 

2015; Pôças et al., 2015; Sharma & Irmak, 2017; Peddinti & Kambhammettu, 

2019; Wang et al., 2019). We compared these measured Kc with those 

suggested in the FAO56 guidelines to quantify the potential errors in Kc. 

The root depth determines the depth of soil layers where the crop extracts 

water from, which thus influences the extractable soil storage capacity. 

However, root depth is difficult to measure due to its variation with crop 

growth stage, soil type, irrigation management and weather conditions. Due to 

the lack of literature, the uncertainty in the root depth was assumed in this 

study as a multiplicative error of 30%. Specifically, errors in root depth were 

sampled from a normal distribution of mean zero and standard deviation of 

30%. These errors were applied to the maximum root depth during the middle 

growth stage of individual crops, as suggested by the FAO guidelines. 

d. Management factors 

The depletion factor represents the maximum soil water depletion allowed by 

an irrigator before applying the next irrigation. This parameter represents the 

relative level of risk that irrigators can tolerate. The FAO guidelines provided 

typical depletion factors, which we considered to construct this uncertainty. 

3. Results and Discussions 

3-1. Expected ranges of uncertainty in each model input 

a. Weather Variables 

From literature, we summarized the expected range of errors for each weather 

input as in Table 3. Based on these recommendations, we formulated the error 

distribution for the sensitivity analysis as detailed subsequently. 
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Table 3. Observation and interpolation and errors in various sources of weather data 

Parameters Observation Errors 
Reanalysis Errors 

RMSE Mean bias SD 

Tdew (°C) ±0.3 

1.7a 

1 - 3.75b 

0a 

-4 - 2.5 with mean of -0.75b 

1.7a  

2.8b 
Tmin (°C) ±0.3 

Tmax (°C) ±0.3 

Rs (MJ/kg.m2) 7% for clear and 20% for cloudy skya 

U (m/s) 
2.5 or 30% 

(whichever greater) 
0.8 - 4.5b 3.5 - 4.5 with mean of 4b 2.83b 

P (mm) 6% 3.1a 0a 3.1a 

References 
(WMO, 2018; Webb, 

2010) 

a(Jones et al., 2009) 
b(BARRA & ERA-Interim & MERRA2) (Su et al., 2019) 

For daily maximum, minimum and dew point temperature, systematic bias 

errors (εt
^
 in Eq. 1) were sampled from a truncated normal distribution with 

mean value of zero, standard deviation of 0.1 within the limits of ±0.3. The 

interpolation random errors (εt
*
 in Eq. 1) were sampled from a normal 

distribution with mean and standard deviation defined by the recommendations 

from the reanalysis datasets of BARRA, ERA-Interim and MERRA-2 (Table 

3), which consists of the larger range of errors within literature reviewed. 

Bias and random errors in solar radiation and wind speed were also sampled 

from probabilistic distributions based on Table 3, with an additional constraint 

to allow only positive values after the error has been added, considering their 

physical plausibility. The bias and random errors for solar radiation were 

treated together with a truncated normal distribution with a mean of 0 and a 

standard deviation of 7% of the value and limited within 20% of the value 

itself. The bias errors for wind speed were sampled from a truncated normal 

distribution with a mean of 0 and a standard deviation of 10% and limited 

within the greater value between 30% of the measured wind speed or 2.5 m/s. 

For interpolation random errors of wind speed, the error distribution was 

defined by the mean bias and standard deviation suggested by from the 

reanalysis datasets of BARRA, ERA-Interim and MERRA-2 (Table 2). 

To represent systematic errors in rainfall, the multiplicative error factor (εt
^
 

in Eq. 2) was selected from a log-normal distribution with mean value of one, 

standard deviation of 2% and limited within 6% of the measured value, based 

on Table 3. To estimate the random errors in rainfall (εt
*
 in Eq. 2), we took a 

different approach to other weather variables. Here we defined the random 

errors in rainfall based on a previous study (Acharya et al., 2019) which 

investigated the performance of the AWAP, BARRA and ERA-Interim 
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modelled rainfall against observed values across different climate zones in 

Australia. The three key performance metrics reported were the correlation 

between modelled and observed values (ρ), the bias ratio (β) and the variability 

ratio (ɣ, ratio of coefficient of variation of modelled rainfall to observed 

values), as summarized in Table 4. The random errors for rainfall were then 

sampled from a probability distribution, with a mean defined by the bias ratio 

β, and the standard deviation defined by the variability ratio ɣ. 

Table 4. Performance metrics of AWAP (A), BARRA (B) and ERA-Interim (E) modelled 

rainfall compared to observations (Acharya et al., 2019) 

 
Tropical Arid Temperate 

A B E A B E A B E 

Correlation (ρ) 0.88 0.42 0.55 0.91 0.6 0.65 0.93 0.72 0.71 

Bias Ratio (β) 1.24 1.28 0.97 1.22 1.35 1.01 1.2 1.22 1.06 

Variability Ratio (ɣ) 0.87 1.15 0.61 0.9 0.85 0.86 0.91 0.93 0.79 

b. Soil Parameters 

Based on the FAO guidelines, the average extractable soil water for light, 

medium and heavy soils are 6.25%, 13.75% and 21.25% with standard 

deviations of 1.25%, 3% and 3%, correspondingly. These were compared with 

the estimated mean and standard deviations of extractable soil water from the 

other two key references (Table 5, based on Rawls et al., 1982; Ratliff et al., 

1983). We found that within the three soil types, the medium soil has the 

estimated mean and standard deviation closer to the those suggested by the 

FAO guidelines. Therefore, we focused on the uncertainty range of extractable 

soil water for the medium soil for this study. 

Table 5. The mean and standard deviation of extractable soil water extracted 

from Rawls et al. 1982 and Ratliff et al. 1983. 

FAO Class Texture Class 
Rawls et al. 1982 Ratliff et al. 1983 

Sample size Mean SD Sample size Mean SD 

Light 
Sand 762 6% 6% 76 6% 2% 

Loamy Sand 338 7% 5% 7 12% 4% 

Medium 

Sandy Loam 666 11% 6% 31 11% 5% 

Loam 383 15% 5% 51 11% 4% 

Silt Loam 1206 20% 5% 83 19% 4% 

Sandy Clay Loam 198 11% 5% 24 11% 3% 

Clay Loam 366 12% 4% 41 14% 4% 

Silty Clay Loam 689 16% 4% 53 14% 3% 
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FAO Class Texture Class 
Rawls et al. 1982 Ratliff et al. 1983 

Sample size Mean SD Sample size Mean SD 

Heavy 

Sandy Clay 45 10% 9% 0 - - 

Silty Clay 127 14% 3% 31 13% 5% 

Clay 291 13% 6% 3 12% 1% 

c. Crop Parameters 

Figure 2 shows the difference between the field-measured Kc values and the 

recommended values from FAO56 for different crop types. A two-way 

Analysis of Variance (ANOVA) test was applied on crop type and crop 

growth stage (initial, middle and end), and found a statistically significant 

(P=0.01%) difference of crop coefficient errors across different crop types, but 

no significant different across different growth stages (P=9%). However, the 

maximum number of reported Kc values we found for a crop type is only 13. 

Considering the small number of studies on assessing Kc values for each crop 

type, we decided to poll the Kc errors across for all crop types over all growth 

stages to define a single error distribution of Kc in this study. This led to a 

normal distribution with mean of 0.04 ad standard deviation of 0.22, from 

which the errors in Kc were drawn from. 

 

Figure 1. Distribution of Kc errors for 25 crop types, which were calculated as the difference 

between measured Kc values in literature and FAO Kc. 

d. Management factors 

FAO56 suggested that the depletion factor is typically associated with an 

uncertainty of 5%. Thus, errors in the depletion factor were drawn from a 

normal distribution with a zero mean and a standard deviation of 5%. The 

FAO suggested value for depletion factors was considered as the nominal 

value where no error presents. 
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3-2. Relative importance of input uncertainties for irrigation scheduling 

The Sobol’ sensitivity indices for each input variable to the soil water balance 

model is shown in Figure 3, with two panels showing the results with 

uncertain in the weather variables considered as bias or random noises, 

respectively. Comparing across the two types of errors, representing weather 

uncertainty as noises has generally reduced the contributions of all the weather 

variables to the total uncertainty in irrigation scheduling. This is expected as 

the bias represents a constant error, while random noises are more likely 

averaged over time. In general, the crop coefficient Kc is the most important 

variable amongst all inputs to the soil water balance model, and this is 

consistent regardless of when weather uncertainty is considered as bias or 

random errors. 

 

Figure 3. Sobol sensitivity indices for the main and total effects of each input factor with a) bias 

in weather data and b) random errors in weather data. Boxes represent the range of each 

sensitivity index of each input across individual study sites. 

The least important input is rainfall. Specifically, the main effects of rainfall 

uncertainty are negligible with both the bias and random errors, while its total 

effects are notable but generally smaller than those of all other weather 

variables. A possible explanation for this result is that, the systematic bias in 

rainfall is assumed as multiplicative errors that can only appear with rainfall 

events (where rainfall>0)–which was based on previous assessments of 

weather station data quality (see Section 2.4–Weather Variables). The 

multiplicative errors also mean that greater uncertainty is often associated with 

more intense rainfall events. On the other hand, if rain falls during an 

irrigation cycle, the time to the next irrigation generally increases, leading to a 

decrease in the irrigation amount per day (i.e., the model output of interest in 

this study) compared to dry days. Linking these with the mechanisms of the 

Sobol’ sensitivity analysis, it is expected that for a wetter condition the 

modelled irrigation per day is lower, while the uncertainty in rainfall is 
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generally high. In contrast, for a dryer condition when the modelled irrigation 

per day is higher, there will be lower or no uncertainty in rainfall. Meanwhile, 

the effect of uncertainties in all other weather variables are not affected by 

neither the occurrence nor the intensity of rain events. Consequently, we can 

expect the relative importance of other weather variables to be higher than 

rainfall as they have more influences on situations with higher irrigation 

amount per day.  

4. Conclusions 

This study aims to assess the sensitivity in irrigation scheduling to the 

uncertainties in individual inputs of the soil water balance model which is used 

to inform scheduling. A global sensitivity analysis was used to assess the 

relative importance of the uncertainty in each model input to the total 

uncertainty in output. We performed a comprehensive literature review to 

define the range of uncertainty in each input variable. Our results highlight the 

crop coefficient Kc as the most important contributor to the total uncertainty in 

modelled irrigation scheduling. Using FAO56-based values for Kc may induce 

a maximum error of ±0.8 for a single crop type, due to the high variation in Kc 

across different locations and crop growth stages. Therefore, alternative 

approaches to estimate Kc should be considered in addition to FAO56, with 

particular focus on representing field-specific Kc while accurately capturing its 

temporal dynamic across the cropping season. Near-time or real-time satellite-

based Kc, such as the IrriSat product which used satellite-based NDVI to 

derive Kc, has popular uptake amongst irrigators in Australia and New Zealand 

(Montgomery et al., 2015). Other satellite data on ground cover and crop 

conditions along with field data can be used to adjust further improve the 

accuracy of Kc values (Yang et al., 2020; Yang et al., 2022). 
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