Water Productivity Journal (WPJ) Quarterly Publication

Document Type : Original Research Paper

Authors

1 National Salinity Research Center (NSRC), Agricultural Research Education and Extension Organization (AREEO), Yazd, Iran.

2 Assistant Professor, Royal Geographical Society (with the Institute of British Geographers), Kensington Gore, SW7 2AR, London, UK.

3 Young Researchers Club, Masjed Soleyman Branch, Islamic Azad University, Iran.

Abstract

Oil and gas drilling produce saline brine, posing a threat and great risk to the environment. Desalination is a pathway to freshwater production and brine removal, however, the energy required for processing and highly concentrated brines curtail the approach. Solar desalination humidification dehumidification (SDHDH) systems are a low energy and economical response that solves the problems. The current study aims to demonstrate saltwater solar-desalination, an innovative SDHDH design, used to process the waste materials. The method was successfully tested at full scale as follows: In a 400 m2 application containing 600 m3 saline-water, the total dissolved solids (TDS) were equal to 141 g l-1, requiring an input of 196.2 kW electrical energy. As a result of SDHDH 266 m3 of freshwater was obtained, with TDS equal to 210 mg l-1. The water-recovery percentage achieved was 44%. The salt removal efficiency was near 100%. Surface-time efficiency varied, between 8 to 30 l m-2day-1. SDHDH use is an effective mechanism to elute freshwater from concentrated brines, maximizing productivity, and lowering hazardous impact to the environment providing benefits to ecosystem and human services alike.

Keywords

Main Subjects