Unconventional Water
Mousa Maleki
Abstract
Nowadays water resources protection, by application of optimized, sustainable and economical approaches, for logical utilization of water has turned to one of the most vital and challenging issues worldwide. Additionally, water reuse, known as a strong factor in managing water crisis, is an appropriate ...
Read More
Nowadays water resources protection, by application of optimized, sustainable and economical approaches, for logical utilization of water has turned to one of the most vital and challenging issues worldwide. Additionally, water reuse, known as a strong factor in managing water crisis, is an appropriate alternative to handle this challenging crisis. This senior project discusses the design and construction of a solar water treatment system taking the advantage of ultraviolet (UV) radiation and a combination of natural processes. An UV wastewater treatment system is designed to demonstrate the wastewater treatment capability of the network. This system is specifically designed to eliminate bacterial contaminants and meet the needs of a community. Only sunlight is needed to power the treatment system. A solar panel collects energy from sunlight to be used for electrical consumptions such as pumping. Ultraviolet light disrupts bacteria and produces a source of drinking water. In fact, we try introducing an innovating idea of a decentralized solar wastewater treatment (DSWWT) machine, which is adaptable with environmental standards goals. In addition to being affordable and eco-friendly, it can be used in different kinds of communities (especially useful for remote communities).This machine will also be capable of being used in any residential, commercial or official building, which produces wastewater. Based on the assessments, manufacturing of this machine is easily reachable.
Unconventional Water
Alessia Corami
Abstract
Phytoremediation is widely viewed as the ecologically responsible alternative to the environmentally destructive physical and chemical remediation methods currently practiced. Soil and water pollution is due to many kind of contaminants from various anthropogenic origins such as agricultural, industrial, ...
Read More
Phytoremediation is widely viewed as the ecologically responsible alternative to the environmentally destructive physical and chemical remediation methods currently practiced. Soil and water pollution is due to many kind of contaminants from various anthropogenic origins such as agricultural, industrial, wastewater; activities which involve the addition of nutrients, pesticides and on the other hand, industry and urbanization pollute the water with solid wastes, heavy metals, solvents, and several other slow degrading organic and inorganic substances. Dispersion of these contaminants from the source can be through the atmosphere, via the waterbodies and water channels, and/or into the soil itself, and from there they enter the food chain and adversely affects the human life. Important progresses have been made in the last years developing native plants for phytoremediation and/or nano-phytoremediation of environmental contaminants. Generally it is a technology that utilizes plants and their associated rhizosphere microorganisms to remove and transform the toxic chemicals located in soils, sediments, groundwater, surface water, and even the atmosphere. Phytoremediation applied to wetlands is an effective, nonintrusive, and inexpensive means of remediating wastewater, industrial water and landfill leachate. It highly increases water productivity.
Unconventional Water
Mohammed Abu-Dayeh Matouq; Abhishek Tiwary; Aiman Alawin; Jamal Othman; Naser Kloub
Abstract
This work compares the performance of a solar still during winter and summer months for purification of salty water, suiting arid conditions to produce distilled water. To ensure zero energy cost, the apparatus is completely run on ambient solar energy pipes for water circulation and heating, without ...
Read More
This work compares the performance of a solar still during winter and summer months for purification of salty water, suiting arid conditions to produce distilled water. To ensure zero energy cost, the apparatus is completely run on ambient solar energy pipes for water circulation and heating, without any pumping requirement. The performance of the unit is evaluated over daylight hours under standard operating conditions during summer where sunshine is almost at its peak. However, the design of the solar still is modified to enhance the heating rate inside the solar basin during winter months with low ambient temperature through the attachment of a solar pipe warm water circulation into the water basin, which was fed by solar panel system water heating units. The water circulation from the basin to the solar collectors is solely due to the temperature difference and no pumping is required to increase the flow of water. The modified arrangement was found to achieve a temperature inside the water basin of over 50°C on a typical winter day when the ambient temperature was as low as 9°C. This resulted in the maximum amount of produced condensate yield reaching up to 2 l/hr, which was found to exceed the typical yield of 1.5 l/hr under summer conditions.